Agile Infrastructure at CERN - Moving 9'000 Servers into a Private Cloud

Helge Meinhard
Leader, Platform and Engineering Services Group, IT Department
04 April 2014
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 21 member states, 1 B CHF budget

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, United Kingdom

Candidate for membership: Romania
Associate member: Serbia

Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America

Numerous non-member states with collaboration agreements
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 21 member states, 1 B CHF budget
- 3’360 staff, fellows, students, apprentices, …

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom
Candidate for membership: Romania
Associate member: Serbia
Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America
Numerous non-member states with collaboration agreements

2’512 staff members, 540 fellows, 315 students, 24 apprentices
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 21 member states, 1 B CHF budget
- 3’360 staff, fellows, students, apprentices, …
- 11’000 users

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom
Candidate for membership: Romania
Associate member: Serbia
Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America
Numerous non-member states with collaboration agreements

2’512 staff members, 540 fellows, 315 students, 24 apprentices

6’700 member states, 1’800 USA, 900 Russia, 236 Japan, …
CERN

- International organisation close to Geneva, straddling Swiss-French border, founded 1954
- Facilities for fundamental research in particle physics
- 21 member states, 1 B CHF budget
- 3’360 staff, fellows, students, apprentices, …
- 11’000 users

“Science for peace”

1954: 12 Member States

Members: Austria, Belgium, Bulgaria, Czech republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovak republic, Spain, Sweden, Switzerland, United Kingdom
Candidate for membership: Romania
Associate member: Serbia
Observers: European Commission, India, Japan, Russia, Turkey, UNESCO, United States of America
Numerous non-member states with collaboration agreements

2’512 staff members, 540 fellows, 315 students, 24 apprentices

6’700 member states, 1’800 USA, 900 Russia, 236 Japan, …
CERN – where the Web was born
CERN – where the Web was born
CERN – where the Web was born
LHC – Large Hadron Collider

- Proton-proton collider
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
- Run 1 until early 2013
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1
 – machine upgrade
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1 – machine upgrade
- Restart early 2015 at 6.5 + 6.5 TeV
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1 – machine upgrade
- Restart early 2015 at 6.5 + 6.5 TeV
LHC – Large Hadron Collider

- Proton-proton collider
- 27 km circumference
- Started operation in 2010 with 3.5 + 3.5 TeV, continued in 2011, 4 + 4 TeV in 2012
 - World’s most powerful particle accelerator
- Run 1 until early 2013
- Now in Long Shutdown 1 – machine upgrade
- Restart early 2015 at 6.5 + 6.5 TeV

Agile infrastructure project
Four Large Detectors

- ATLAS, CMS, ALICE, LHCb

Some ATLAS facts:
- 100 million channels
- 25 m diameter, 46 m length, 7'000 tons
- 3'000 scientists (including 1’000 grad students)
- 40 MHz collision rate
- Run 1: 300 Hz event rate after filtering

All LHC experiments: 30 PB in 2012, 100 PB in total
Results so far

• Many… the most spectacular one being
Results so far

- Many… the most spectacular one being
- 04 July 2012: Discovery of a “Higgs-like particle”
Results so far

- Many… the most spectacular one being
- 04 July 2012: Discovery of a “Higgs-like particle”
Results so far

- Many… the most spectacular one being
- 04 July 2012: Discovery of a “Higgs-like particle”
Results so far

- Many… the most spectacular one being
- 04 July 2012: Discovery of a “Higgs-like particle”
- March 2013: The particle is indeed a Higgs boson
Results so far

- Many… the most spectacular one being
 - 04 July 2012: Discovery of a “Higgs-like particle”
- March 2013: The particle is indeed a Higgs boson
 - 08 Oct 2013 / 10 Dec 2013: Nobel price to Peter Higgs and François Englert
 - CERN, ATLAS and CMS explicitly mentioned
Data Handling

- 30 PB per year demand 100,000 processors
- World-wide LHC Computing Grid (WLCG): 150 computer centres all around the world
 - CERN as Tier-0 largest and most important
CERN Data Centre

Machine Inventory

Service information
- **full name:** Machine Inventory
- **short name:** dcbynum
- **group:** IT-CF-FPP
- **site:** CERN

email: Data.Centre.By.Numbers@cern.ch
web site: http://hwcollect.cern.ch/

Service availability
- **availability:** 100%
- **status:** available

last update: 15:30:32, 2 Apr 2014 (48 seconds ago)
expires after: 1440 minutes

rss feed with status changes

Additional service information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of 10GB NICs</td>
<td>3,073</td>
</tr>
<tr>
<td>Number of 1GB NICs</td>
<td>19,234</td>
</tr>
<tr>
<td>Number of cores</td>
<td>97,696</td>
</tr>
<tr>
<td>Number of disks</td>
<td>73,872</td>
</tr>
<tr>
<td>Number of memory modules</td>
<td>67,591</td>
</tr>
<tr>
<td>Number of processors</td>
<td>18,452</td>
</tr>
<tr>
<td>Number of servers</td>
<td>10,718</td>
</tr>
<tr>
<td>Total disk space (TiB)</td>
<td>108,149</td>
</tr>
<tr>
<td>Total memory capacity (TiB)</td>
<td>342</td>
</tr>
</tbody>
</table>

Part of (subservice of): none / not declared

Subservices
- none / not declared

Clusters, subclusters and nodes
- none / not declared

Depends on
- none / not declared

Depended on by
- none / not declared
CERN Data Centre

Machine Inventory

Service information
- **full name:** Machine Inventory
- **short name:** dcbynum
- **group:** IT-CF-FPP
- **site:** CERN
- **email:** Data.Centre.By.Numbers@cern.ch
- **web site:** http://hwcollect.cern.ch/

Service availability
- **availability:** 100%
- **status:** available
- **last update:** 15:30:32, 2 Apr 2014 (48 seconds ago)
- **expires after:** 1440 minutes

rss feed with status changes

Additional service information

- **Number of 10GB NICs:** 3,073
- **Number of 1GB NICs:** 10,224
 - **Number of cores:** 97,696
- **Number of disks:** 73,672
- **Number of memory modules:** 67,591
- **Number of processors:** 18,452
- **Number of servers:** 10,718
- **Total disk space (TiB):** 108,149
- **Total memory capacity (TiB):** 342

Part of (subservice of): none / not declared

Subservices
- none / not declared

Clusters, subclusters and nodes
- none / not declared

Depends on
- none / not declared

Depended on by
- none / not declared
CERN Data Centre

Machine Inventory

Service information
- **full name:** Machine Inventory
- **short name:** dcbynum
- **group:** IT-CF-FPP
- **site:** CERN
- **email:** Data.Centre.By.Numbers@cern.ch
- **web site:** http://hwcollect.cern.ch/

Service availability
- **availability:** 100%
- **status:** available
- **last update:** 15:30:32, 2 Apr 2014 (48 seconds ago)
- **expires after:** 1440 minutes
- **rss feed with status changes**

Additional service information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of 10GB NICs</td>
<td>3,073</td>
</tr>
<tr>
<td>Number of 1GB NICs</td>
<td>19,234</td>
</tr>
<tr>
<td>Number of cores</td>
<td>87,606</td>
</tr>
<tr>
<td>Number of disks</td>
<td>73,872</td>
</tr>
<tr>
<td>Number of memory modules</td>
<td>67,091</td>
</tr>
<tr>
<td>Number of processors</td>
<td>18,452</td>
</tr>
<tr>
<td>Number of servers</td>
<td>10,718</td>
</tr>
<tr>
<td>Total disk space (TiB)</td>
<td>108,149</td>
</tr>
<tr>
<td>Total memory capacity (TiB)</td>
<td>342</td>
</tr>
</tbody>
</table>
Data Handling – Future (1)

- LHC Run 2 (starting 2015): higher energy
 - 8 TeV to 13 TeV
- More interesting collisions to retain after filtering
 - ATLAS: 300 Hz up to 1 kHz or more
- Moore’s law helps, but not sufficient
- Large effort to improve software efficiency
 - Exploit multi-threading, new instruction sets, ...
- Still need factor 2 in terms of cores, storage, ...
Data Handling – Future (2)

- Challenges for CERN-IT

 - Where? CERN data centre full (3.5 MW)

 - How? No additional personnel
 - Traditional way of running centre does not scale
CERN Tier-0 Extension (1)

- Following open tendering process: Wigner research centre in Budapest/Hungary
CERN Tier-0 Extension (2)
Agile Infrastructure Project (1)

Challenges:
- Handle 15’000 servers
 - Part of them not (easily) physically accessible
- Quickly react to changing requirements
 - Deploy new services and servers within hours rather than weeks or months
- Not possible with previous structure
 - Mostly vertical view – service managers responsible for (almost) entire stack
 - Strong coupling of services with hardware life-cycle
 - Configuration and monitoring: home-made developments of 10 years ago
 - Very successful at the time, but increasingly brittle
 - Lack of support for dynamic host creation/deletion
Agile Infrastructure Project (2)

- Launched a project in 2012 to move to a more *horizontal* approach
 - Services
 - Configuration
 - Software installation
 - Hardware
- **Aim:** improve
 - Operational efficiency
 - Resource efficiency
 - Responsiveness
- **Virtualisation** is key for ‘horizontalisation’
- Virtualisation + agility + provisioning = *cloud*
Agile Infrastructure Project (3)

• Guiding principles
 - CERN is not special (any more) – join the community
 - ‘Tool-chain’ approach
 • Break problem space down into small pieces
 • Quickly identify suitable solution for each one – good enough, not necessarily best one
 • Be prepared to promptly reconsider if needed…
 - Minimal glue
 - ‘Devops’ approach – eat your own (dog food | medicine)
 - Preference for open-source solutions
 • Benefits all parties
Agile Infrastructure Project

- Jenkins
- AIMS/PXE
- Foreman
- Puppet
- mcollective, yum
- Yum repo
- Pulp
- JIRA
- git, SVN
- Koji, Mock
- Openstack Nova
- Orchestration
- Dispatcher
- Scheduler
- Control
- Deploy
- Config management
- OS boot/install
- Provisioning
- CI Server
- Issue tracker
- Build
- SOM Repository
- Sources
- Code
- Workflows
- Resources
- Configuration
- Topology
- Monitoring
- Events
- Trending
- Reporting
- Model
- Asset inventory
- Identify
- Host naming
- CMDB
- Hardware database
- Puppet stored config DB
- Lemon
Agile Infrastructure Project (5)

- Key areas
 - Private cloud services
 - Configuration
 - Monitoring
 - Registration, burn-in, software installation
 - Scheduling and accounting
- ~ 15 people in the core team, mostly part-time
- Massive deployment started in 2013
Private Cloud Services (1)

• Earlier smaller-scale (production!) projects with Xen/KVM, Hyper-V; SCVMM, OpenNebula
• Chose Openstack for the project
 - Very large, active community with attractive mix of company support and user influence
 - Moving fast – new functionality becoming available very rapidly
• Followed Openstack releases
 - Essex, Folsom, Grizzly, Havana (migration completed)
 - Watching out for Icehouse
• Using Nova (multiple cells), Glance, Cinder, Keystone, Ceilometer, …
Private Cloud Services (2)

- Fully integrated with Active Directory, CERN’s network database, account and quota management, ...
- Production service – documentation, support lines, notifications, operator and sysadmin support, ...
- Focused on ‘cattle’ use-case first, now addressing ‘pets’
- Linux (KVM) and Windows (Hyper-V) as hypervisors and guests
- Target: >= 90% of CERN’s servers
Private Cloud Services (3)

- Volume service (requirement for live migration) deployed (Cinder-based)
 - Linux: Large (3 PB) CEPH installation as backend
- As of 03-Apr-2014: 2’615 hypervisors, 5’515 VMs
 - Including major part of large-scale batch service (4’500 physical servers total)
 - Rapid growth (100 or more hypervisors per week)
Private Cloud Services (4)
Configuration (1)

- Dynamic cloud requires dynamic configuration system
- Previous system (Quattor) not dynamic and scalable enough, high maintenance
- Chose *Puppet* as the centre of configuration services
- In addition: PuppetDB, Foreman, mcollective, git
- Currently 17 Puppet servers (including 5 VMs), can be scaled out
- Serving 8’216 hosts (physical and virtual) as of 02-Apr-2014; 80…150 Git commits to configuration files per week
Configuration (2)

- We know how to scale out further – targeting 50k hosts
- Strong emphasis on QA – all services to have machines in QA (10% level) for configuration and software installation
- Currently being addressed
 - Security improvements, including handling of secrets
 - Workflow automation, continuous integration
- Some tools written ourselves (e.g. state management)
Configuration (3)

• Most visible part for many service managers
 - Training sessions
 - Improvements to monitoring configuration services

• Migration out of old tools is a serious issue
 - Maintenance of old tools takes person-power
 - Co-existence of tool sets confusing
 - Agreed target date for complete shutdown: 31 October 2014
Monitoring (1)

- Way too many independent (i.e. partly overlapping, partly different) activities at CERN
- Need for common architecture supporting dynamically adding probes, data stores, data consumers
- Addressing both exception and performance monitoring
- Huge investment into probes to be preserved
Monitoring (2)

- Portal
- Report
- Analysis
- Storage Feed
- Storage
- Aggregation / Transport
- Publisher
- Alarm Feed
- Alarm
- Publisher
- Publisher
- Publisher

Helge.Meinhard (at) CERN ch
Monitoring (3)

- Technologies chosen:
 - Hadoop
 - ElasticSearch and Kibana
 - Flume
 - ActiveMQ

- Producers/probes
 - Probes from previous home-grown system
 - SCOM, Spectrum
 - Syslogs, application logs
 - …
Monitoring (4)

- Notification (alarm) system in production, linked with ticketing system
- Central dashboard
- O (10) of GB of monitoring data per day
- Being worked on: more dashboards, analytics
Extending to Public Clouds: The Helix Nebula project

• Aim: develop and exploit cloud computing infrastructure
 - For various European IT-intense research projects (CERN, ESA, EMBL, …)
 - Extend to enterprises, governments and society later
 - Infrastructure provided by various commercial and public European cloud providers
• (Slides courtesy of Bob Jones/CERN)
A European cloud computing partnership: big science teams up with big business

Strategic Plan
- Establish multi-tenant, multi-provider cloud infrastructure
- Identify and adopt policies for trust, security and privacy
- Create governance structure
- Define funding schemes

To support the computing capacity needs for the ATLAS experiment

Setting up a new service to simplify analysis of large genomes, for a deeper insight into evolution and biodiversity

To create an Earth Observation platform, focusing on earthquake and volcano research

To improve the speed and quality of research for finding surrogate biomarkers based on brain images

Suppliers
- Atos
- CGI
- CloudSigma
- CSA
- DANTE
- EGI
- Indra
- Interoute
- SAP
- Sixsq
- SWITCH
- T-Systems
- Terradue
- The Server Lab

Adopters
- Capgemini
- CRI
- ECMWF
- Ifremer
- OpenNebula
- Thales
- Telefónica

http://www.helix-nebula.eu
contact@helix-nebula.eu

@HelixNebulaSC
HelixNebula.TheScienceCloud
Hybrid Public-Private Cloud Model

Academic
- Big Science
- Small and Medium Scale Science

Other market sectors
- Government
- Manufacturing
- Oil & gas, etc.

Helix Nebula
- Atos
- Cloud Sigma
- T-Systems
- Interoute

Network Commercial/GEANT
- Publicly funded
- Commercial
Building the hybrid cloud
Testing the public-commercial cloud interoperability

- Deploy the ESA/CNES/DLR SuperSites Exploitation Platform on EGI Fed Cloud and then the CERN CMS/ATLAS flagship use cases across commercial suppliers and EGI Federated Cloud via a Blue Box broker

- Use the same evaluation criteria adopted for deployment on commercial cloud service suppliers

EGI Federated Cloud

Task Force
- Launched in Sep 2011
- 70 members from 40 institutions and 13 countries

Pre-production test-bed:
- 14 resource centres actively providing resources (900 cores, 16 TB storage)
- 30 active users from structural biology, linguistics, ecology, space science, software engineering

http://go.egi.eu/cloud

Bob Jones, CERN
Helix Nebula Marketplace (HNX)

- Builds upon the work of the Helix Nebula Initiative and EC support action
- Supported by European cloud providers
- Integrates with existing e-Infrastructures to form a hybrid cloud Market Place and reach out to Europe’s research communities
- Trusted cloud services through compliance with EU regulations and legislation
- Simplifies procurement process across multiple services providers

hnx.helix-nebula.eu/
Conclusions (1)

• IT world rapidly changing
• CERN can’t follow all changes… but every now and then we’re catching up
• AI project is very challenging… but also motivating and exciting
• Have gone a long way already… but still a lot of work to do
• Huge amounts of to-do lists with technical items… but cultural change at least as demanding
Conclusions (2)

• The IT aspects are very interesting and challenging… but the final objective is physics discoveries at the LHC at its design energies as of 2015

• We’re convinced to be on a good way!

• Stay tuned for more physics results from LHC…